Associative-algebraic approach to logarithmic conformal field theories
نویسنده
چکیده
We set up a strategy for studying large families of logarithmic conformal field theories by using the enlarged symmetries and non–semi-simple associative algebras appearing in their lattice regularizations (as discussed in a companion paper). Here we work out in detail two examples of theories derived as the continuum limit of XXZ spin-1/2 chains, which are related to spin chains with supersymmetry algebras gl(n|n) and gl(n + 1|n), respectively, with open (or free) boundary conditions in all cases. These theories can also be viewed as vertex models, or as loop models. Their continuum limits are boundary conformal field theories (CFTs) with central charge c = −2 and c = 0 respectively, and in the loop interpretation they describe dense polymers and the boundaries of critical percolation clusters, respectively. We also discuss the case of dilute (critical) polymers as another boundary CFT with c = 0. Within the supersymmetric formulations, these boundary CFTs describe the fixed points of certain nonlinear sigma models that have a supercoset space as the target manifold, and of Landau-Ginzburg field theories. The submodule structures of indecomposable representations of the Virasoro algebra appearing in the boundary CFT, representing local fields, are derived from the lattice. A central result is the derivation of the fusion rules for these fields.
منابع مشابه
Logarithmic conformal field theories and AdS correspondence
We generalize the Maldacena correspondence to the logarithmic conformal field theories. We study the correspondence between field theories in (d+1)-dimensional AdS space and the d-dimensional logarithmic conformal field theories in the boundary of AdSd+1. Using this correspondence, we get the n-point functions of the corresponding logarithmic conformal field theory in d-dimensions.
متن کاملGradient Flow in Logarithmic Conformal Field Theory
We establish conditions under which the worldsheet β-functions of logarithmic conformal field theories can be derived as the gradient of some scalar function on the moduli space of running coupling constants. We derive a renormalization group invariant version of this function and relate it to the usual Zamolodchikov C-function expressed in terms of correlation functions of the worldsheet energ...
متن کاملThe Logarithmic Conformal Field Theories
We study the correlation functions of logarithmic conformal field theories. First, assuming conformal invariance, we explicitly calculate two– and three– point functions. This calculation is done for the general case of more than one logarithmic field in a block, and more than one set of logarithmic fields. Then we show that one can regard the logarithmic field as a formal derivative of the ord...
متن کاملTwo-Point Functions and Boundary States in Boundary Logarithmic Conformal Field Theories
Amongst conformal field theories, there exist logarithmic conformal field theories such as cp,1 models, various WZNW models, and a large variety of statistical models. It is well known that these theories generally contain a Jordan cell structure, which is a reducible but indecomposable representation. Our main aim in this thesis is to address the results and prospects of boundary logarithmic c...
متن کاملLOGARITHMIC CONFORMAL FIELD THEORY or HOW TO COMPUTE A TORUS AMPLITUDE ON THE SPHERE
We review some aspects of logarithmic conformal field theories which might shed some light on the geometrical meaning of logarithmic operators. We consider an approach, put forward by V. Knizhnik, where computation of correlation functions on higher genus Riemann surfaces can be replaced by computations on the sphere under certain circumstances. We show that this proposal naturally leads to log...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007